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Raman forward scattering and self-modulation of laser pulses in tapered plasma channels

J. R. Pen˜ano, B. Hafizi,* P. Sprangle, R. F. Hubbard, and A. Ting
Plasma Physics Division, Beam Physics Branch, Naval Research Laboratory, Washington, D.C. 20375

~Received 26 March 2002; published 17 September 2002!

The propagation of intense laser pulses with durations longer than the plasma period through tapered plasma
channels is investigated theoretically and numerically. General propagation equations are presented and re-
duced partial differential equations that separately describe the forward Raman~FR! and self-modulation~SM!
instabilities in a nonuniform plasma are derived. Local dispersion relations for FR and SM instabilities are used
to analyze the detuning process arising from a longitudinal density gradient. Full-scale numerical fluid simu-
lations indicate parameters that favorably excite either the FR or SM instability. The suppression of the FR
instability and the enhancement of the SM instability in a tapered channel in which the density increases
longitudinally is demonstrated. For a pulse undergoing a self-modulation instability, calculations show that the
phase velocity of the wakefield in an untapered channel can be significantly slower than the pulse group
velocity. Simulations indicate that this wake slippage can be forestalled through the use of a tapered channel.
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I. INTRODUCTION

Intense laser pulses propagating through plasma chan
can be utilized in a broad range of applications such as x
generation@1#, advanced laser fusion schemes@2,3#, and
plasma-based accelerators@4#. It is possible that the nex
generation of laser wake field accelerator~LWFA! experi-
ments will use tapered plasma channels to guide short
tense laser pulses over long distances~many Rayleigh
lengths! to achieve GeV electron energies. By tapered, i
meant that the plasma density and channel radius can
along the propagation path of the laser pulse. Allowing
density to increase in the direction of propagation is adv
tageous for accelerator applications because the phase v
ity of the wake field behind the laser pulse is increased@5,6#.
The density variation can be optimally configured to cre
luminal regions in the wake field where electron dephas
~the process by which energetic electrons outrun the acc
ating and focusing regions of the wake! can be forestalled for
extended distances@7,8#.

Numerical simulations of short pulses in untapered ch
nels have demonstrated stable propagation over many te
Rayleigh lengths and have shown the possibility of acce
ating electrons to;1 GeV energies@9,10#. In addition,
simulations using tapered channels indicate that;4 GeV
energies are possible@8#. While these results are promisin
the laser and channel requirements for an experimental d
onstration of a GeV accelerator are difficult to realize
present. For example, the short-pulse GeV accelerator
posed in Ref.@8# requires a plasma channel of length 0.5
m with an on-axis density on the order of 1017cm23. While
segmented capillary discharges@11# can be used to taper th
density and, in principle, can be used to create arbitra
long plasma channels, it is difficult to create densities be
1018cm23 using this technique. Operating at densities
;1018cm23 places most lasers in the standard or long-pu

*Mailing address: Icarus Research, Inc., P.O. Box 30780,
thesda, MD 20824-0780.
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regimes, i.e.,ctL>lp , wheretL is the pulse duration andlp

is the plasma wavelength. Hence, it is useful to study ch
nel propagation in the long-pulse regime in order to be
understand present-day experiments and to determine v
experiments that can be done in the near future.

It is often observed in experiments that when the la
power,P, exceeds the critical power for self-focusing,Pp ,
the laser pulse becomes self-guided@12–14# and energetic
electrons are produced@15–18#. However, the self-guiding
process can only be maintained for several (;5) Rayleigh
lengths. Guiding over much longer distances using p
formed plasma channels has been experimentally dem
strated@19–22# and simulations@9,10,23# of channel-guided
pulses exhibit strong pulse modulation and wake field g
eration. However, rapid phase slippage in untapered chan
is also observed@8,23#, which could severely limit the en
ergy gain. Using a tapered channel may make it possibl
partially overcome this dephasing limitation and make
channel-guided self-modulated LWFA a viable candidate
near-term accelerator experiments.

Pulses with durationsctL.lp propagating in plasmas ar
subject to Raman instabilities@24–28#. Although the forward
Raman~FR! instability has a growth rate that is smaller tha
that of the backward Raman instability, it is perhaps mo
disruptive since it can remain within the pulse for extend
distances and grow to a large amplitude. The backward
man instability can act as a seed for the FR instabi
@29,30#. The FR instability is fundamentally a one
dimensional~1D! process that arises from the longitudin
bunching of energy within the laser pulse. The bunching
associated with the near-resonant scattering of photons
Stokes and anti-Stokes sidebands which are shifted from
laser carrier frequency by the plasma frequency. As the
stability progresses, the laser envelope becomes modu
at the plasma frequency and wakefields are generated
plasma channels, the FR instability is affected by the rad
variation of the plasma frequency and proceeds differen
than in a homogeneous plasma@34#.

The self-modulation~SM! instability @31–33# also pro-
duces envelope modulations at the plasma frequency
-
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generates wake fields. It differs from the FR instability
that it is not a 1D process and arises from focusing due to
transverse variations in the wake field@33#. The SM instabil-
ity is enhanced by relativistic self-focusing.

For long pulses, the FR and SM instabilities can inter
for parameters relevant to plasma-based accelerator app
tions. The coupling of FR and SM instabilities in untaper
plasma channels was analyzed by Esareyet al. @40#. Both
instabilities, however, are also affected by longitudinal var
tions in the plasma density such as in the case of a tap
channel. In a tapered channel, the resonance condition
particular Stokes sideband is satisfied only in a localiz
spatial region. As the laser pulse propagates out of the in
action region, the FR instability for that spectral band is d
tuned and growth is limited. This detuning process was a
lyzed by Rosenbluth@35# and considered heuristically b
McKinstrie and Bingham@26#. However, the growth rate o
the FR instability increases with the plasma density. Hen
in a tapered channel in which the density increases in
direction of propagation, the detuning effect may be comp
sated by the increasing local growth rate. For a channe
which the density decreases along the propagation path,
the detuning effect and the decrease in plasma density a
suppress the FR instability. The longitudinal density var
tion also causes the critical power for relativistic se
focusing to vary along the propagation path. The variation
the focusing power can affect the SM instability.

This paper examines theoretically and numerically the
fects of a tapered plasma channel on the FR and SM in
bilities and on the wake fields generated by these insta
ties. The basic equations governing laser pulse propaga
in a tapered channel are presented in Sec. II. In Sec. III,
general propagation equations are used to derive red
equations that separately describe the FR and SM insta
ties in a plasma with a longitudinal density variation. Sect
IV contains a heuristic analysis of detuning caused by a l
gitudinal density gradient. Section V presents results of f
scale numerical simulations of propagation in tapered ch
nels. Conclusions are presented in Sec. VI.

II. GENERAL FORMULATION

In this section, the basic equations describing the pro
gation of a laser pulse in a tapered plasma channel are
sented. The laser pulse, plasma channel, and the coord
axes are illustrated schematically in Fig. 1. It is assumed
the laser electric field is linearly polarized and can be writ
in terms of a slowly varying, dimensionless complex env
lope, A(r ,t), and a rapidly varying phasec(z,t)
5*0

zk0(z8) dz82v0t, i.e.,
03640
e

t
ca-

-
ed
r a
d
r-
-
a-

e,
e
-

in
th
to
-

f

f-
a-
li-
on
e
ed
ili-
n
-

l-
n-

a-
re-
ate
at
n
-

E~r ,t !5
1

2
~mcv0 /e!A~r ,t !exp@ ic~z,t !# ŷ1c.c., ~1!

wheree andm are the fundamental units of charge and ele
tron mass, respectively,c is the speed of light in vacuum,v0
is the angular laser frequency, and c.c. denotes the com
conjugate. The plasma channel is characterized by a spat
varying density of the form

N~r ,z!5n~z!@11r 2/r ch
2 ~z!#, ~2!

where r ch(z) and n(z) denote the longitudinally varying
channel radius and on-axis plasma density, respectively.
parabolic radial variation of the density allows for the gui
ing of a laser beam with a transverse Gaussian profile,
A}exp(2r2/r0

2) when the channel radius is@8#

r ch~z!5
kp~z!r 0

2

2A12P/Pp~z!
, ~3!

where P is the laser power, Pp(z)52(m2c5/e2)
3@v0 /vp(z)#2 is the critical power for nonlinear self-
focusing in a plasma@36,37#, kp(z)5vp(z)/c52p/lp(z),
andvp(z)5A4pe2n(z)/m is the plasma frequency on axis

The equations governing the evolution of the laser en
lope are then given by@8#

FIG. 1. Schematic illustration of a laser pulse and a tape
plasma channel.
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and

F ]2

]t2
1Vp

2~r ,z!GEw52
mc2

4e
Vp

2~r ,z!“uAu2, ~5!

where r 5Ax21y2 is the radial coordinate,r 0 is the initial
laser spot size,Vp(r ,z)5A4pe2N(r ,z)/m, and Ew is the
ponderomotively excited wake electric field which produc
a density perturbationdn given by

dn

n~z!
52

e

mvp
2~z!

“•Ew . ~6!

The divergence operator is given by“5“'1 ẑ@(]/]z)
2vg

21(]/]t)#. The coordinate system (x,y,z,t) is associ-
ated with a reference frame moving at instantaneous velo
vg(z); the independent variablez denotes propagation dis
tance andt5t2*0

zdz8/vg(z8) measures time relative to th
arrival of the laser pulse at locationz. The quantity uAu
5(e/mcv0)^2E•E&1/2, where^& denotes a time average,
the magnitude of the electron oscillation momentum norm
ized tomc.

In writing Eqs. ~4! and ~5!, it has been assumed that th
weakly relativistic limit, i.e.,uAu2,1, applies. Also, in de-
riving Eq. ~4! a small term proportional to]2A/]z2 has been
neglected. Neglecting this term is equivalent to neglect
backscattered waves. Hence, the backward Raman insta
is omitted. Otherwise, Eq.~4! is correct to orderuAu3. In
deriving Eq.~5! the termc2

“3“3Ew , which appears on
the left side@38,39#, has been neglected. Neglecting this te
is valid when 1/kp!r 0!r ch .

The wave numberk0 is given by

k0~z!5c21Av0
224c2/r 0

22vp
2~z!, ~7!

and the transformation velocityvg has been set equal to th
linear group velocity of the laser, i.e.,

vg~z!5c2k0~z!/v0 . ~8!

Equations~4! and ~5! describe laser pulse propagatio
subject to the effects of group velocity dispersion, relativis
self-focusing, self-phase modulation, and optical guiding
a preformed tapered plasma channel. Plasma group velo
dispersion is included through the term in Eq.~4! propor-
tional to ]2A/]t2 @40,41#. Relativistic self-focusing@42,43#
and self-phase modulation are introduced though the t
proportional touAu3. Optical guiding by the plasma chann
is obtained by balancing the first three terms on the ri
hand side of Eq.~4!. Additionally, the term proportional to
the mixed derivative]2A/]t]z can lead to the longitudina
bunching of energy; neglecting this term is equivalent
making the paraxial approximation@40#. The radial variation
of the channel density in Eq.~5! causes curvature of th
plasma wave wave fronts and a damping of the wakefield
the longitudinal direction@44#.

Equations~4! and ~5! can describe both the FR and S
instabilities. The forward Raman instability arises fundam
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tally from a longitudinal bunching of energy which gives ris
to a modulation of the laser envelope on the scale of
plasma wavelength. In Eq.~4!, the FR instability in the four-
wave resonant regime arises through the combined effec
the wakefield and mixed derivative terms. The se
modulation instability also modulates the laser envelope
the plasma frequency, however, this is accomplished thro
transverse focusing provided by the radial variation of
plasma wakefield@33#. The SM instability is retained in Eq
~4! through a combination of the density perturbation te
and the transverse Laplacian operator. The mixed deriva
term can be neglected for SM, i.e., the paraxial approxim
tion can be made. Additionally, the relativistic term can
neglected for a fundamental description of SM, although
we will show, relativistic focusing can enhance its growth

III. REDUCED EQUATIONS

Reduced equations that separately describe the FR
SM instabilities for propagation in a plasma with a longit
dinally varying density,N(z), can be derived from the gen
eral propagation equations. We begin with Eqs.~4!, ~5!, and
~6!, but neglect the plasma channel, group velocity disp
sion, and the spot size correction terms. It is also assu
that the longitudinal variation of the carrier wave numb
k0, and group velocity,vg , can be neglected. These approx
mations are valid when the pulse dimensions and chan
radius are much larger than 1/kp , vp!v0, and the growth
rates of instabilities are much larger thanc/ZR , whereZR

5k0(0)r 0
2/2 is the Rayleigh length. With these approxim

tions, Eq.~4! can be written approximately as

]A

]z
5

i

2k0
S 12

i

k0vg

]

]t D ~¹'
2 2kp

2F!A, ~9!

where F5dn/n2uAu2/4, and it has been assumed th
u]A/]tu!k0vg .

When the growth rates of the instabilities are mu
smaller than the plasma frequency, the operator“, when
acting on fields, can be approximated by“'“'

2( ẑ/vg)]/]t, which is equivalent to making the quasistat
approximation@45#. This allows Eqs.~5! and~6! to be com-
bined into a single scalar equation forF given by

F ]2

]t2
1vp

2~z!GF5
1

4
@c2

“'2vp
2~z!#uAu2, ~10!

where the term (1/4)(c2/vg
221)(]2uAu2/]t2) has been ne-

glected from the right side under the assumption thatvg
'c.

To proceed with the analysis of Eqs.~9! and ~10!, the
fields are represented as

A5a01a1~z,t!eiu1a2~z,t!e2 iu, ~11!

and

F5f01@f~z,t!eiu1c.c.#, ~12!
2-3
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wheref052a0
2/4 andu(r' ,z,t)5k�•r'2vp(z)t is taken

to be a real function ofr'5xx̂1yŷ, z, andt. The complex
envelopesa6 and f contain the growth of the instabilitie
and are assumed to vary slowly int compared withu.

Substituting Eqs.~11! and ~12! into Eqs.~9! and ~10! re-
sults in

]

]z
~a1e2 ivpt!52

ie2 ivpt

2k0
F12

i

k0vg
S ]

]t
2 ivpD G

3@kp
2a0f1k'

2 a1#, ~13!

]

]z
~a2* e2 ivpt!5

ie2 ivpt

2k0
F11

i

k0vg
S ]

]t
2 ivpD G

3@kp
2a0f1k'

2 a2* #, ~14!

]f

]t
5

2 ia0

8vp
~c2k'

2 1vp
2!~a11a2* !. ~15!

In deriving Eqs. ~13! and ~14!, terms proportional to
f0a6 , which are small compared withfa0, have been ne-
glected on the right side.

Settingk'50, allows Eqs.~13!, ~14!, and~15! to be com-
bined into a single equation forf which describes Rama
forward scattering in an inhomogeneous plasma, i.e.,

F ]2

]z]t
2

gFR
2 ~z!

vg
Gf5F ]

]z
lnS e2 ivpt

vp
D G]f

]t
, ~16!

where the right side contains only terms that are proportio
to the gradient of the plasma density. The quantitygFR(z)
5a0vp

2(z)/A8v0 is the standard expression for the loc
peak temporal growth rate of FR in a rarefied plasma@25,26#
in which the Stokes and anti-Stokes waves are driven re
nantly, i.e., four-wave growth. For cases wherevp /v0 can-
not be neglected compared with unity, the anti-Stokes w
is driven nonresonantly and can be neglected. In this lim
Eqs. ~14! and ~15! can be combined into an equation forf
identical in form to Eq. ~16!, but with gFR(z)5a0$@1
1(vp /v0)#(vp /v0)%1/2vp/4, which is the standard expres
sion for the peak temporal growth rate in the three-wa
regime@26#.

In the limit of a homogeneous plasma, i.e.,vp8(z)50, Eq.
~16! reduces to

F ]2

]z]t
2

gFR
2

vg
Gf50, ~17!

which is identical in form to the quasistatic limit of Eq.~10!
of Ref. @28#. Equation~17! has the asymptotic solutionf
;exp@2gFRAzt/vg#.

For a weakly inhomogeneous plasma, the right side of
~16! can be neglected leading to an approximate solu
given by

f~z,t!;expF2S t

vg
Ez

gFR
2 ~z8! dz8D 1/2G . ~18!
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Equation~18! is valid in the regimet@1/vp , z!L, and for
Azt!2LgFR /vpAvg, where L5@(]vp

2/]z)/vp#21 is the
density gradient scale length.

An equation describing the self-modulation instability
an inhomogeneous plasma is obtained from Eqs.~13!, ~14!,
and~15! by making the paraxial approximation, i.e., negle
ing the ]/]t operator on the right side of Eq.~9!. To
derive a single equation describing the SM instability,
is convenient to leta6(z,t)5ā6(z,t)exp(6iDz), f(z,t)
5f̄(z,t)exp(iDz) and define â6(z,t)5ā6exp@7ivp(z)t#

andf̂(z,t)5f̄exp@2ivp(z)t#. With the paraxial approxima-
tion, choosingD52k'

2 /2k0 allows Eqs.~13! and ~14! to be
written more simply as

]ā1

]z
52 i

kp
2a0

2k0
f̄, ~19!

S ]

]z
12iD D ā2* 5 i

kp
2a0

2k0
f̄. ~20!

Equations~19! and~20! can be combined with Eq.~15! into
a single equation forâ2* given by

c2
]

]z H e2 ivpt

vp
3

]

]t FeivptS ]

]z
12iD D â2* G J 5 ig2â2* ,

~21!

where g5a0k'/4k0. Equation ~21! describes the self-
modulation instability in a plasma with a longitudinal dens
variation.

In the uniform plasma limit Eq.~21! reduces to

1

c

]3 ā2*

]t]z2
5 ig2kp

3 ā2* , ~22!

where the term 2iDâ2* is assumed to be small in compariso

with ]â2* /]z and has been neglected. This assumption
valid when k' /kp!(a0

2k0 /kp)1/4. Equation ~22!, which is
identical in form to Eq.~52! of Ref. @33#, has an asymptotic
solution of the form@31,33#

ā2* ;expF3SA3

2
1

i

2D S 1

4
g2kp

3z2ct D 1/3G . ~23!

IV. HEURISTIC THEORY

In this section, we present a heuristic analysis of param
ric instabilities in an inhomogeneous plasma similar to t
presented by McKinstrie and Bingham in Ref.@26#. This will
prove useful for interpreting results from the full scale n
merical simulations presented in Sec. V.

In a spatially uniform and underdense plasma, with
assumption thatvg'c, the complex envelopes can be e
pressed as monochromatic perturbations of the fo
;exp@i(dk2dv/c)z2idvt#, wheredk[k2kp , andk is taken
to be real anddv complex. In the lab frame (z,t), this is
equivalent to writing, for example,F5f01$fexp@ikz
2-4
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2(vp1dv)t#1c.c.%. In a uniform plasma, a resonant wav
number (k5kp) will grow until pump depletion, electron
trapping, or other nonlinear mechanisms saturate the in
bility. In an inhomogeneous plasma, the growth of cert
spectral bands can be limited by detuning. For a plasma w
kp(z), detuning is defined as the process by which a per
bation with wave numberk5kp(z0) is stabilized as the lase
pulse propagates a sufficient distance away fromz0 to make
kp(z) change by an amount greater than the spectral widt
the Raman line. Hence, unstable bands ink space translate
into spatially localized regions of interaction where partic
lar wave numbers are amplified. The width and location
the interaction regions and the maximum amount of grow
expected for a given spectral band can be estimated fro
calculation of the local growth rate, which will be a functio
of z and k. We consider the case where the scale length
inhomogeneity is much larger than the locale folding length
of the instability. Hence, at every locationz, it is assumed
that the local growth rate is approximately equal to the
mogeneous plasma growth rate. The homogeneous pla
growth rates for FR and SM due to monochromatic pert
bations can be calculated from Eqs.~17! and ~22!.

For the following analysis, we consider a specific ca
where the plasma density increases linearly withz, i.e.,

vp~z!5vp0~11z/L !1/2, ~24!

wherevp0 andL are positive constants.

A. Forward Raman instability

Assuming f;exp@i(dk2dv/c)z2idvt#, in Eq. ~17! re-
sults in

dv5
1

2
@cdk1 iA4gFR

2 2c2dk2#. ~25!

Maximum exponential growth withdv5 igFR is obtained
when dk50. Writing dk(z)5k2kp(z), the normalized lo-
cal growth rate for the four-wave interaction is given by

ĝ5
1

2
$4ĝ0

2~11 ẑ!22@~11 ẑ!1/22 k̂#2%1/2, ~26!

for 4ĝ0
2(11 ẑ)2.@(11 ẑ)1/22 k̂#2 and zero otherwise. The

normalized quantities areĝ5Im(dv)/vp0 , k̂5kc/vp0 , ẑ

5z/L, and ĝ05a0vp0 /A8v0, i.e., the four-wave Raman
growth rate atz50 normalized tovp0.

Figure 2 shows the dependence of the growth rate gi
by Eq. ~26! on ẑ for several values ofk̂. Because of the
spatial variation of the plasma density, each wave numbk̂
is unstable only in limited spatial region of width,Dz

'8Lk̂3ĝ0. The peak growth rate, for wave numberk̂ is
given by gmax'vp0k̂2ĝ0, which occurs at locationz0

'L( k̂221). In general, the number ofe foldings experi-
enced by a given spectral componentk̂ after propagating a
distance ẑ is given by G( ẑ,k̂)5(Lvp0 /c)*0

zĝ( ẑ8,k̂) dẑ8.
Carrying out the integration over the unstable reg
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2Dz/2,z2z0,Dz/2, the maximum number ofe foldings
of a given spectral component is approximately given by

G~`,k̂!'2p~Lvp0 /c!k̂5ĝ0
2 . ~27!

In writing Eq. ~27!, the assumptionDz/L! k̂2 has been
made. Equation~27! is consistent with the result derived b
Rosenbluth@35# using a more rigorous WKB analysis.

For comparison with simulations it is useful to apply th
type of analysis to a situation in which a laser pulse pro
gates through a plasma with a given density scale lengtL

and a finite lengthLp . Figure 3 shows plots ofG(Lp /L,k̂),
i.e., the number ofe foldings at z5Lp , for Lp53L and
several values of the pump amplitudea0. The maximum
number ofe foldings is seen to increase withk̂ until k̂'2,
and then decrease sharply thereafter. The increase inG for
k̂,2 is due to thek̂5 scaling mentioned previously. The cu
off at k̂'2 is due to the finite plasma length, i.e., for the
parameters,k̂.2 impliesz0.Lp . In practice, the number o
e foldings may be less thanG due to saturation. If we choos
an arbitrary saturation level ofG55, then we can draw the
following conclusions from Fig. 3. First, for pulses with su
ficiently smalla0, the forward Raman instability can be su
pressed by detuning, i.e., growth does not reach satura
levels, as indicated by thea050.08 curve in Fig. 3. Second
for sufficiently largea0, the wave number that reaches sa
ration first should decrease asa0 increases. This can be see
by comparing thea050.15 anda050.25 curves in Fig. 3.
Note that for the curves labeleda050.15 anda050.25, a

FIG. 2. Scaled local growth rateĝ calculated from Eq.~26! vs ẑ

for a050.15, vp0 /v050.1, andk̂51.41, 1.73, and 2.

FIG. 3. Number ofe foldings atz5Lp vs scaled wave numberk̂
for a050.08, 0.15, and 0.25. Plasma parameters arevp(0)/v0

50.1, Lvp(0)/c523103, and scaled plasma lengthLp /L53.
2-5
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givenG is associated with two different values ofk̂. Because
eachk̂ is unstable in a distinct spatial region as shown in F
2, the smallerk̂ should saturate the instability first.

B. Self-modulation instability

Assuming ā2* ;exp@i(dk2dv/c)z2idvt#, in Eq. ~22! re-
sults in a dispersion relation which is cubic indv, i.e.,

dv̄~dv̄2d k̄!25g2, ~28!

wheredv̄5dv/vp , d k̄5dk/kp .
Unstable wave numbers are those for which the discri

nant of the cubic is positive. This condition can be written

k2kp,S 27

4
g2D 1/3

kp , ~29!

which shows that there is a broad range of unstable w
numbers. The peak growth rate occurs atk5kp , i.e.,

dvudk505S 2
1

2
1 i

A3

2 D g2/3vp . ~30!

We consider a linearly varying density as given by Eq.~24!
and solve Eq.~28! numerically, lettingkp→kp(z) to obtain
the local growth rate as a function ofẑ andk̂. Figure 4 plots
the scaled growth rate versusz for several values of scale
wave numberk̂5kc/vp0. The parameters used for the plo
i.e., a050.5, k'c/vp050.2, Lvp0 /c543103, and
v0 /vp0530 correspond closely with parameters used
full-scale simulations presented in the following section.
seen from Fig. 4, the peak growth rate for a givenk occurs
when k5kp or equivalently, atz05L@(kc/vp0)221#. The
region of instability, however, is not highly localized abo
z0. Hence, for propagation into an increasing plasma den
wave numbers that initially satisfy the resonance condit
k5kp at somez0, will remain unstable forz.z0, unlike the
case for the FR instability in which an unstable wave num
becomes stable after propagating a distance of'8Lk̂3ĝ0.

FIG. 4. Scaled SM growth rate vsz/L for k̂51.41, 1.73, and 2
obtained by solving Eq.~28! with a050.5, k'c/vp050.2,
Lvp0 /c543103, andv0 /vp0530.
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V. NUMERICAL SIMULATIONS

This section presents numerical simulations of propa
tion in tapered plasma channels. The simulations render
laser pulse on a 3D Cartesian (x,y,t) grid and use Eqs.~4!
and ~5! to advance the laser pulse inz. The approximation
“'“'2( ẑ/vg)]/]t is made in order to facilitate the nu
merical integration. This approximation requires that t
scale length of the longitudinal density variation is long co
pared with thee folding length of any observed instability.

The seeding of the FR and SM instabilities as well
their subsequent growth can be influenced by the ini
pulse shape. In all of the simulations, the initial las
envelope (z50), is taken to have the formA5a0exp
(2r2/r0

2) cos(pt/tL) for 2tL/2,t,tL/2 and zero otherwise
The plasma channel is characterized by Eqs.~2! and~3! with
the longitudinal variation of the on-axis density given by E
~24!. The channel radius is chosen to vary this way so that
the absence of instability, the pulse and channel are matc
When setting the channel radius, the powerP appearing in
Eq. ~3! is chosen to beP0 /A2, whereP0 is the initial peak
laser pulse power. Figure 5 shows an example of the cha
teristic variation ofn(z) andr ch(z) for the channels used in
the simulations. Propagation in tapered and untapered c
nels will be compared. The simulations are categorized
cording to whether the FR or SM instability is the domina
process.

A. Forward Raman instability

According to the heuristic analysis, there are parame
regimes of the forward Raman instability where certain sp
tral components can grow to saturation, and regimes wh
the growth of all spectral components of a given laser pu
can be suppressed by the longitudinal density gradient
tapered channel~see Fig. 3!. The simulations will address
these two regimes.

The first set of simulations are in the parameter regi
where the instability is expected to grow to saturation. A
first case, we consider a laser pulse witha050.15, l
51 mm, r 0512.6mm, andtL50.48 ps propagating throug
a tapered channel withn(0)51.2431019cm23 and L
56.7ZR . For these parametersP0 /Pp(0)50.05. The pa-
rameters are chosen to correspond to the curve labelea0

FIG. 5. Dependence of scaled channel radius and on-
plasma density onz. Plasma density is given byn(z)5n(0)(1
1z/L) whereL54 ZR . Channel radius is given by Eq.~3!.
2-6



ha

m
h

k
-
n

ow

c-
en
ok
d

ion

o

ta
li

he

ur-
wth
e is
e

is-

red
cal
ncy

y

ro-
act
ree
nly
er
e
k of

hes

is-
III,

e
the

li
e

e

Th

l,

Fig.

RAMAN FORWARD SCATTERING AND SELF- . . . PHYSICAL REVIEW E 66, 036402 ~2002!
50.15 in Fig. 3. Hence, the analysis of Sec. IV predicts t
the k'1.8vp(0)/c mode will e fold '7 times within a re-
gion of width Dz'1.7ZR in the neighborhood ofz
515ZR .

Figure 6~a! shows the resulting on-axis Fourier transfor
of the laser pulse at 25ZR in an untapered channel wit
on-axis densityn(0)51.2431019cm23. Multiple Stokes
and anti-Stokes lines are observed with a dominant Sto
signal atv2v05vp . Figure 6~b! shows the on-axis spec
trum at z517ZR after propagating through a tapered cha
nel. The peak of the dominant Stokes sideband has gr
'10 e foldings from its initial amplitude and is shifted from
the pump byv'21.7vp(0). At z517ZR there is no appre-
ciable signal atv'vp(0) due to the detuning of these spe
tral components by the spatial variation of the plasma d
sity. For both the tapered and untapered cases, the St
sideband is approximately three times larger in amplitu
than the anti-Stokes sideband indicating that the simulat
are marginally in the four-wave Raman regime.

The evolution of the Stokes sideband for the simulation
Fig. 6 is illustrated in Fig. 7. Figure 7~a! compares the
growth of the dominant Stokes line for a tapered and un
pered channel. In the untapered channel, the Stokes
grows immediately after the start of the simulation. T
Stokes wave grows exponentially forz.7 ZR with a growth

FIG. 6. On-axis frequency spectrum of a laser pulse at~a! z
525ZR in an untapered channel and at~b! z517ZR in a tapered
channel. Propagation distances are chosen such that Stokes
undergo a similar number ofe foldings between the two cases. Th

quantityDv̄ in panel~b! denotes the frequency separation betwe
the pump and the Stokes sideband normalized tovp(0). Thequan-
tity a2 denotes the amplitude of the first Stokes sideband.
initial laser pulse hasa050.15, l51 mm, r 0512.6mm, andtL

50.48 ps. The on-axis plasma density atz50 is n(0)51.24
31019 cm23. At z50, P0 /Pp(0)50.05. For the tapered channe
L56.7ZR .
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rate that is roughly 3.5 times smaller than the standard fo
wave Raman growth rate. In the tapered channel, the gro
of the Stokes wave is delayed. No discernable Stokes lin
observed untilz.10ZR . The suppression of the Stokes lin
for z,10ZR is consistent with the detuning process d
cussed in Sec. IV. Figure 7~b! shows the evolution of the
normalized frequency shift of the Stokes line for the tape
channel. The Stokes frequency shift increases with the lo
plasma frequency but is smaller than the plasma freque
by a constant amount'0.2vp(0). The Stokes shift at a
given z is equal to the plasma frequency at approximatelz
23ZR .

Figure 8 shows the laser power and on-axis intensity p
files associated with the spectra shown in Fig. 6. The f
that the power and intensity profiles exhibit a similar deg
of modulation indicates that the modulations arise mai
from a longitudinal bunching of energy within the las
pulse, which is characteristic of the FR instability. Th
modulations are also seen to damp faster towards the bac
the pulse for the tapered channel case.

Assuming that the FR instability is saturated, i.e., reac
a highly nonlinear state, after a given number ofe foldings,
the local analysis yields a prediction for the propagation d
tance,zG , at which saturation occurs. As stated in Sec.
the maximum number ofe foldings for a givenk is G

'8(Lvp0 /c) k̂5ĝ0
2, which occurs in the neighborhood ofzG

'L( k̂221). Solving fork̂ in the expression forzG and sub-
stituting into the expression forG results in a relationship
betweenzG anda0, i.e., z0}a0

24/5, which can be compared
with the simulations. As a criterion for saturation in th
simulations, we assume that saturation occurs when

nes

n

e

FIG. 7. ~a! Amplitude of the Stokes sidebands vsz for the ta-
pered and untapered plasma channels from the simulations of

6. ~b! Normalized frequency shift of the Stokes sideband,Dv̄, vs z
for the tapered channel simulation of Fig. 6~b!. The solid curve in
panel~b! denotes the normalized plasma frequency.
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modulations grow sufficiently large as to double the la
intensity from its initial peak value. Figure 9 shows the d
pendence ofzG on a0 obtained from the simulations. Th
simulations show good agreement with thea0

24/5 scaling pre-
dicted by the local analysis over a range in whicha0 andzG

vary by more than a factor of 3. Because of the rapid int
sity gain near the saturation region,zG does not depend
strongly on the arbitrary choice of saturation level, i.e.,
plot in Fig. 9 would not change significantly if we had a
sumed a factor of 3 or 4 intensity gain for the saturat
criterion instead of 2.

The next simulation illustrates an interesting case
which no Stokes lines of the laser grow to saturation. T
initial laser pulse hasa050.04, l51 mm, tL51 ps, and
r 05150mm. Figure 10~a! shows the spectrum of this puls
after propagating 2.5ZR in an untapered channel with a
on-axis density ofn(0)5731018cm23. The Stokes side-
band is 100 times larger than the anti-Stokes sideband i
cating that the Raman instability occurs in the three-wa
regime. Figure 10~b! shows the spectrum of the same initi
laser pulse after propagating 2.5ZR in a tapered channel with
L57.4ZR . The initial on-axis density of the tapered chann
is the same as that of the untapered channel. Note the
pearance of a Stokes structure with three closely spa
peaks. If the evolution of the spectrum inz is examined, the
peaks would appear sequentially in the order indicated on
plot with the lowest amplitude peak appearing first. Ea
peak is seen to grow to a maximum amplitude and de
slightly as the next peak appears.

Figure 11 shows the on-axis laser envelope profile az
50 and z52.5ZR for propagation in an untapered and
tapered channel. The untapered case shows the appeara
modulations in the laser envelope. Although the modulati

FIG. 8. Longitudinal profiles of scaled power anduAu2 at ~a! z
525ZR in an untapered channel and at~b! z517ZR in a tapered
channel corresponding to the spectra displayed in Fig. 6.
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are seen to convect backward in the pulse frame, the con
tion velocity is slow enough that the modulations can gr
to a large amplitude before reaching the back of the pu
For the tapered channel, since no frequency sidebands g
to a significant amplitude over the propagation length of
simulation, large amplitude modulations of the laser en
lope at the plasma frequency are not observed. A car
examination of the laser envelope shows that as each St
peak appears in the spectrum of Fig. 10, small amplitu
modulations form near the leading edge of the laser en
lope. The modulations then rapidly convect out the back
the laser pulse before they can grow to large amplitud
leaving the laser envelope relatively undistorted. The int
sity gain observed in Fig. 11~b! is due to both a longitudina
and transverse compression of the laser pulse.

FIG. 9. Dependence of the scaled intensity doubling lengthzG

on a0. Points represent simulations with parametersl51 mm, r 0

512.6mm, n(0)51.2431019 cm23, tL50.48 ps, andL520ZR .
The solid curve shows a best fit using thezG}a0

24/5 dependence
predicted by local analysis.

FIG. 10. Frequency spectrum atz52.5ZR after propagation in
~a! an untapered and~b! tapered channel for parametersa050.04,
l51 mm, r 05150mm, n(0)5731018 cm23, and tL51 ps. For
these parametersP0 /Pp(0)50.25. For the tapered channel,L
57.4ZR .
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B. Self-modulation instability

The SM instability can occur for a matched, chann
guided pulse even when the laser powerP!Pp since the
channel effectively eliminates diffraction. As the plasma de
sity increases with propagation distance, the critical pow
for nonlinear self-focusing decreases leading to an increa
focusing of the laser pulse. The increased focusing can
hance the SM instability. This is illustrated in the followin
simulations in which a laser pulse is propagated throug
tapered channel in which the on-axis density and chan
radius vary as shown in Fig. 5. The initial laser pulse h
a050.5, l51 mm, tL52.4 ps, andr 0540mm. The on-axis
plasma density atz50 is n(0)51.2431018cm23. The peak
laser powerP is such thatP5Pp(0)/2.

Figure 12 shows a plot ofuAu2 on-axis and scaled lase

FIG. 11. Scaled amplitudesuAu2 at z50 ~dashed curves! andz
52.5ZR ~solid curves! for propagation in~a! an untapered and~b!
tapered channel for the same simulations as in Fig. 10.

FIG. 12. On-axis profile ofuAu2 ~solid curve! and normalized
laser power~dashed curve! vs t at z52.5ZR for an initial laser
pulse with a050.5, l51 mm, tL52.4 ps, andr 0540mm. The
on-axis plasma density atz50 is n(0)51.2431018 cm23. For
these parameters,P0 /Pp(0)50.5. The density and channel radiu
vary as in Fig. 5.
03640
-

-
r

ed
n-

a
el
s

power versust after propagating a distance of 2.5ZR . The
laser power is normalized to the nonlinear focusing powe
z52.5ZR . Although the laser envelope is strongly mod
lated, no modulations are evident in the power profile. T
indicates that the modulations in the laser intensity w
caused by a flow of energy transverse to the laser axis, w
is characteristic of the SM instability. The ratio ofP/Pp(z)
has increased from its initial value ofP50.5Pp(0) due to
the smaller value ofPp at z52.5ZR .

The fact that the modulations are enhanced by relativi
focusing was verified by comparing the simulation of Fig.
with two cases in which the nonlinear self-focusing pow
did not decrease with propagation distance. In the first co
parison, the initial conditions were identical except that t
channel was not tapered. For this case, self-modulation
observed but with the modulations growing more slow
than when the channel was tapered. Figure 13 shows tha
the same propagation distance, the degree of envelope m

FIG. 13. Surface plots ofuAu2 in thex-t plane atz52.5 ZR after
propagation through~a! an untapered channel and~b! a tapered
channel in which the radius and density vary as shown in Fig
The initial laser pulse used for both panels is characterized bya0

50.5, l51 mm, tL52.4 ps, andr 0540mm. The on-axis plasma
density atz50 is n(0)51.2431018 cm23.
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lation is much less for propagation in the untapered chan
The second comparison utilized the same initial la

pulse and tapered channel as the run shown in Fig. 12~b!, but
artificially held constant the plasma density in theuau3 term
of Eq. ~4!. As a result, the relativistic focusing effect was n
enhanced as the pulse propagated. For this case, the gr
of the modulations also progressed more slowly than for
tapered case. Hence, it is reasonable to conclude that w
relativistic self-focusing is not a necessary condition for
SM instability, it was the mechanism responsible for enha
ing its growth.

Figure 14 shows the on-axis frequency spectrum az
52.5ZR after propagation in an untapered channel an
tapered channel. Unlike the simulations done in the Ram
regime, the Stokes and anti-Stokes sidebands are of e
amplitude and the spectrum is highly symmetric. At a
given locationz the sidebands for the tapered channel c
are larger in amplitude and are broader than for the untap
channel.

The evolution of the Stokes sideband of Fig. 14 is plot
in Fig. 15. Figure 15~a! compares the growth of the Stoke
amplitude for a tapered and untapered channel. Unlike
case of the FR instability, the tapered channel does not
nificantly delay the onset of the instability relative to th
untapered channel. This is consistent with the analytical
sult that detuning is not effective for the SM instability
these parameters~see Fig. 4!. Figure 15~b!, illustrates the
evolution of the Stokes line frequency shift for the taper
channel. Similar to the FR case of Fig. 7, the Stokes
quency shift increases with the local plasma frequency bu
smaller than the local plasma frequency at any givenz by a
constant amount'0.08vp(0).

FIG. 14. On-axis frequency spectrum atz52.5ZR for propaga-
tion in ~a! an untapered and~b! tapered channel corresponding
the simulation runs shown in Fig. 13.
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C. Wake fields in tapered channels

The electron dephasing length is usually defined as
propagation distance required for an electron moving at
speed of light to slip a distance oflp/4 relative to the wake-
field. The standard expression for the dephasing len
@8,10#, LD5gg

2lp5lp
3/2l2 is derived under the assumptio

that the phase velocity of the wake,vw , is equal to the group
velocity of the laser pulse,vg . While this assumption is valid
in the short pulse (ctL,lp) regime it may not be accurate i
the long pulse regime when the wake is generated prima
by envelope modulations that result from instabilities. In th
case, it is more accurate to assume that the phase veloci
the wake will be nearly equal to the phase velocity of t
modulations, which need not be equal to the laser pu
group velocity.

For an untapered channel, the approximate phase velo
of the modulations,vm , can be calculated from the dispe
sion relation. For example, the fastest growing mode for
SM instability will have vm'Re(v)/kp , where v5vp
1dv anddv is obtained from Eq.~30!. The scaled modu-
lation phase velocity,bm5vm /c, in a uniform plasma is then
given approximately by

bm'12
1

2 S a0l

16r 0
D 2/3

, ~31!

where we have chosenl'52p/k'54r 0. Equation~31! in-
dicates thatbm,bg when

S a0l

16r 0
D 2/3

.
vp

2

v0
2

1
2c2

r 0
2

. ~32!

FIG. 15. ~a! Amplitude of the Stokes sidebands vsz for the
tapered and untapered plasma channels from the simulation of

14. ~b! Normalized frequency shift of the Stokes sideband,Dv̄, vs
z for the tapered channel simulation of Fig. 14~b!. The solid curve
in panel~b! represents the normalized plasma frequency.
2-10
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Hence, a more accurate estimate of the dephasing le
for pulses undergoing self-modulation isLD8 5gm

2 lp where
gm5(12bm)21/2. As an example, consider a self-modulat
laser pulse with l51 mm, a050.5, and spot sizer 0
540mm in a plasma with densitynp51.2431018cm23

(lp530mm). For this example,gm513 andgg529, which
indicates thatLD8 'LD/5.

Figure 16 shows a level plot of on-axisEz /Ewb as a func-
tion of t and z resulting from the full-scale simulation. In
this type of plot, objects traveling slower~faster! than the
laser pulse will trace out a trajectory with a positive~nega-
tive! slope. For reference, the thin white curves denote
jects traveling at velocitiesc and vm , i.e., the theoretica
phase velocity of Eq.~31!. For this example, it is observe
that the phase velocity of the modulations is equal to
phase velocity of the wakefield. The theoretical value of
modulation phase velocity is slightly smaller than the wa
phase velocity resulting from the simulation, with a relati
error in the relativistic factor,g of '10%. The curve denot
ing v5c in Fig. 16 indicates that the dephasing distance
a particle traveling near the speed of light is'0.5ZR . These
results are consistent with simulations reported in Ref.@23#.

The phase velocity of the wakefield in a longitudina
varying plasma can be expressed in terms of the velocit
modulations,vm , in a straightforward manner. The wav
number of the plasma wave is given byKp(z)
5vp(z)/vm(z), where the modulation velocity is also take
to vary spatially. Behind the laser pulse, the phase of
plasma wave in the group velocity frame is given
c(z,t)5vp@(vm

212vg
21)z2(t2t0)#, wheret0 is an arbi-

trary constant which fixes the phase. In the laboratory fra
the frequency and wave number associated with the pla
wave areV52]c/]t and K5@(]/]z)2vg

21(]/]t)#c, re-
spectively. Hence, the phase velocity of the plasma wav

vw~z,t![
V

K
5vm~z!H 12

vp8

vp
vmFt2t02S 1

vm
2

1

vg
D zG

1zS vmvg8

vg
2

2
vm8

vm
D J 21

, ~33!

FIG. 16. Level plots of the on-axis longitudinal component
the electric field vsz andt for propagation in an untapered plasm
channel for the same simulation as in Fig. 13~a!. Electric field is
normalized toEwb5mcvp0 /e.
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where a prime denotes a derivative inz. For the parameters
considered here, terms proportional tovm8 and vg8 do not
contribute significantly to the phase velocity. In the absen
of a density gradient we recovervw5vm . Also, in the short-
pulse regime we can setvm5vg and recover, essentially, Eq
~30! of Ref. @8#, which gives the wakefield phase velocity fo
a tapered channel in the short-pulse limit.

Figure 17~a! shows the profile of the longitudinal electri
field associated with the laser pulse shown in Fig. 13~b!. The
wakefield amplitude increases int to a peak amplitude of
Ez50.27Ewb , whereEwb5mcvp0 /e'110 GV/m, and then
slowly damps fort.0.5 ps. The damping is an effect ass
ciated with the radial variation of the plasma density and
been observed in earlier works@44#. In the tapered channe
the wakefield in the neighborhood oft50.7 ps has a phas
velocity close toc as shown in Fig. 17~b!. It has been shown
previously that particles injected into this luminal region
the wake can be accelerated to energies beyond the dep
ing limit @8#. This appears to be a way to mitigate the pha
slippage problem seen in other simulations of the chan
guided self-modulated LWFA@23#.

The fractional energy spread acquired by a distribution
electrons injected in the vicinity of the luminous point of th
wake is given by

DW~z!5
W~0,z!2W~dt,z!

W~0,z!
'

vp0
2 dt2

2 S 11
z

L0
D , ~34!

where dt5t2tc , tc denotes the axial coordinate of th
luminous point,W(0,z) denotes the energy gained by a
electron injected at the luminous point,W(dt,z) denotes the
energy gained after a distancez by an electron initially dis-
placed bydt from the luminous point,vp0 is the on-axis

FIG. 17. ~a! Normalized on-axis longitudinal component of th
electric field atz52.5ZR associated with the laser pulse of Fi
13~b!. Electric field is normalized toEwb5mcvp0 /e. Panel ~b!
shows a level plot of the on-axis longitudinal electric field vsz and
t for propagation in a tapered channel for the same simulation a
Fig. 13~b!.
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plasma density atz50, andL05vp /vp8uz50 is the density
scale length atz50. In deriving Eq.~34! it has been as-
sumed thatz!L0 , vp0dt!1, the wake field amplitude is
constant, and that the electrons are injected with an in
energyW(dt,0)!W(dt,z). It is also assumed that the lum
nous point occurs where the accelerating field is maxim
and that its phase is constant~see Fig. 17!. Using Eq.~34!,
we find that for the parameters of Fig. 17, i.e.,lp0530mm
and L0;2 cm, an electron bunch of duration;5 fsec will
acquire a fractional energy spread of;7% after propagating
a distance of;1 cm.

VI. CONCLUSIONS

We have investigated the propagation of intense la
pulses with pulse durations greater than the plasma perio
tapered plasma channels. Reduced partial differential e
tions that separately describe the FR and SM instabilities
longitudinally varying plasma were derived and a heuris
analysis of the detuning of these instabilities was presen
An illustrative case of a linearly increasing plasma dens
was considered to identify the relevant scalings that cha
terize the detuning process. The analysis shows that the
instability can be easily detuned since a given wave num
is unstable only within a limited spatial region~see Fig. 2!.
For the SM instability, the detuning process is not as eff
tive since the unstable region is much broader in extent~see
Fig. 4!.

Full-scale numerical simulations of propagation in tape
plasma channels were preformed and parameters that fa
ably excite either the FR or SM instability were found. T
forward Raman simulations exhibited modulations of the
ser intensity caused by the longitudinal bunching of ene
~see Fig. 8!. Detuning of the FR instability in a tapered cha
nel was observed. For example, Fig. 7 shows that the gro
of the Stokes line is delayed in a tapered channel relativ
an untapered channel and that the frequency of the St
line varies with propagation distance. Simulations show
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that laser pulses undergoing a self-modulation instability i
plasma channel are characterized by modulations ari
from the transverse flow of energy. As seen in Fig. 14, th
self-modulated pulses exhibit highly symmetric spectra. F
a tapered channel in which the plasma density increase
the direction of propagation, it was shown that the grow
of the SM instability is enhanced by relativistic focusin
It is also evident from Fig. 15 that, unlike the FR instabilit
the tapered channel did not delay the growth of the S
instability.

The phase velocity of the wake field generated by the
instability was analyzed. For propagation in a unifor
plasma, the phase velocity of the wake is smaller than
group velocity of the laser pulse when the condition given
Eq. ~32! is satisfied. Equation~31!, which gives the phase
velocity of the wake, was found to be in good agreem
with the simulation presented in Sec. V. Results indicate t
the slower phase velocity of the wake should be taken i
account for an accurate calculation of the dephasing len

Simulations show that in a tapered channel, the wake fi
phase velocity can be equal toc at some location behind th
pulse. The wake field amplitude, however, initially increas
and then decreases towards the back of the pulse. Fo
example shown in Fig. 17, the phase velocity of the wa
becomes equal toc in the region where the wakefield ampl
tude is maximum. The larger wake field amplitude occurri
within the luminal part of the wake provides the ideal co
dition for accelerating high-energy electrons. An optical
jection scheme capable of producing short (;fsec) electron
bunches, such as the colliding pulse injector@46#, may be
necessary to limit the energy spread of the accelerated
ticles. These results suggest that a self-modulated LWFA
lizing a tapered channel may be a viable near-term exp
ment.
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