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Raman forward scattering and self-modulation of laser pulses in tapered plasma channels
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The propagation of intense laser pulses with durations longer than the plasma period through tapered plasma
channels is investigated theoretically and numerically. General propagation equations are presented and re-
duced partial differential equations that separately describe the forward R&Reand self-modulatioiSM)
instabilities in a nonuniform plasma are derived. Local dispersion relations for FR and SM instabilities are used
to analyze the detuning process arising from a longitudinal density gradient. Full-scale numerical fluid simu-
lations indicate parameters that favorably excite either the FR or SM instability. The suppression of the FR
instability and the enhancement of the SM instability in a tapered channel in which the density increases
longitudinally is demonstrated. For a pulse undergoing a self-modulation instability, calculations show that the
phase velocity of the wakefield in an untapered channel can be significantly slower than the pulse group
velocity. Simulations indicate that this wake slippage can be forestalled through the use of a tapered channel.
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I. INTRODUCTION regimes, i.e.c7 =\, wherer__is the pulse duration and,
is the plasma wavelength. Hence, it is useful to study chan-

Intense laser pulses propagating through plasma channetel propagation in the long-pulse regime in order to better
can be utilized in a broad range of applications such as x-raynderstand present-day experiments and to determine viable
generation[1], advanced laser fusion schemigh3], and experiments that can be done in the near future.
plasma-based acceleratd#)]. It is possible that the next It is often observed in experiments that when the laser
generation of laser wake field accelerattWWFA) experi-  power, P, exceeds the critical power for self-focusirfg, ,
ments will use tapered plasma channels to guide short, irthe laser pulse becomes self-guidd®—14 and energetic
tense laser pulses over long distano@sany Rayleigh electrons are producdd5-18. However, the self-guiding
lengthg to achieve GeV electron energies. By tapered, it isprocess can only be maintained for several5) Rayleigh
meant that the plasma density and channel radius can vafgngths. Guiding over much longer distances using pre-
along the propagation path of the laser pulse. Allowing theformed plasma channels has been experimentally demon-
density to increase in the direction of propagation is advanstrated[19—22 and simulation$9,10,23 of channel-guided
tageous for accelerator applications because the phase velgauilses exhibit strong pulse modulation and wake field gen-
ity of the wake field behind the laser pulse is incred$e|.  eration. However, rapid phase slippage in untapered channels
The density variation can be optimally configured to creatds also observed8,23], which could severely limit the en-
luminal regions in the wake field where electron dephasingrgy gain. Using a tapered channel may make it possible to
(the process by which energetic electrons outrun the accelepartially overcome this dephasing limitation and make the
ating and focusing regions of the walaan be forestalled for channel-guided self-modulated LWFA a viable candidate for
extended distancdg,8]. near-term accelerator experiments.

Numerical simulations of short pulses in untapered chan- Pulses with durationsr >\, propagating in plasmas are
nels have demonstrated stable propagation over many tens fibject to Raman instabilitig24 —28. Although the forward
Rayleigh lengths and have shown the possibility of accelerRaman(FR) instability has a growth rate that is smaller than
ating electrons to~1 GeV energieg[9,10]. In addition, that of the backward Raman instability, it is perhaps more
simulations using tapered channels indicate that GeV  disruptive since it can remain within the pulse for extended
energies are possib[&]. While these results are promising, distances and grow to a large amplitude. The backward Ra-
the laser and channel requirements for an experimental demman instability can act as a seed for the FR instability
onstration of a GeV accelerator are difficult to realize at[29,30. The FR instability is fundamentally a one-
present. For example, the short-pulse GeV accelerator praimensional(1D) process that arises from the longitudinal
posed in Ref[8] requires a plasma channel of length 0.5-1bunching of energy within the laser pulse. The bunching is
m with an on-axis density on the order of'16m™ 3. While  associated with the near-resonant scattering of photons into
segmented capillary dischargild] can be used to taper the Stokes and anti-Stokes sidebands which are shifted from the
density and, in principle, can be used to create arbitrariljaser carrier frequency by the plasma frequency. As the in-
long plasma channels, it is difficult to create densities belovstability progresses, the laser envelope becomes modulated
10'cm™3 using this technique. Operating at densities ofat the plasma frequency and wakefields are generated. In
~10"®cm™2 places most lasers in the standard or long-pulselasma channels, the FR instability is affected by the radial

variation of the plasma frequency and proceeds differently
than in a homogeneous plasiig].
*Mailing address: Icarus Research, Inc., P.O. Box 30780, Be- The self-modulation(SM) instability [31-33 also pro-
thesda, MD 20824-0780. duces envelope modulations at the plasma frequency and
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generates wake fields. It differs from the FR instability in Tapered Plasma Channel
that it is not a 1D process and arises from focusing due to the
transverse variations in the wake fi¢RBB]. The SM instabil- Laser Pulse
ity is enhanced by relativistic self-focusing.

For long pulses, the FR and SM instabilities can interact ..qﬂ]mmn W’MM" —
for parameters relevant to plasma-based accelerator applica-
tions. The coupling of FR and SM instabilities in untapered = l«——
plasma channels was analyzed by Esagewl. [40]. Both L > Ap
instabilities, however, are also affected by longitudinal varia- —
tions in the plasma density such as in the case of a tapered
channel. In a tapered channel, the resonance condition for a
particular Stokes sideband is satisfied only in a localized
spatial region. As the laser pulse propagates out of the inter-
action region, the FR instability for that spectral band is de- FIG. 1. Schematic illustration of a laser pulse and a tapered
tuned and growth is limited. This detuning process was angplasma channel.
lyzed by Rosenblutfi35] and considered heuristically by
McKinstrie and Binghanj26]. However, the growth rate of
the FR instability increases with the plasma density. Hence, 1 A
in a tapered channel in which the density increases in the E(r,t)=z(mcwg/e)A(r,t)exdiy(z,t)]ly+c.c, (1)
direction of propagation, the detuning effect may be compen- 2
sated by the increasing local growth rate. For a channel in
which the density decreases along the propagation path, bofheree andm are the fundamental units of charge and elec-
the detuning effect and the decrease in plasma density act {f, mass, respectivelg,is the speed of light in vacuura,
suppress the FR instability. The longitudinal density variasg the angular laser frequency, and c.c. denotes the complex

tion also causes the critical power for relativistic Self- conigate. The plasma channel is characterized by a spatially
focusing to vary along the propagation path. The variation Otlarying density of the form

the focusing power can affect the SM instability.

This paper examines theoretically and numerically the ef-
fects of a tapered plasma channel on the FR and SM insta-
bilities and on the wake fields generated by these instabili- N(r,z)=n(z)[1+r?/r3(2)], (2)
ties. The basic equations governing laser pulse propagation
in a tapered channel are presented in Sec. Il. In Sec. lll, the
general propagation equations are used to derive reducéhere rcy(z) and n(z) denote the longitudinally varying
equations that separately describe the FR and SM instabilfhannel radius and on-axis plasma density, respectively. The
ties in a plasma with a longitudinal density variation. Sectionparabolic radial variation of the density allows for the guid-
IV contains a heuristic analysis of detuning caused by a loning of a laser beam with a transverse Gaussian profile, i.e.,
gitudinal density gradient. Section V presents results of full-Axexp(-r%rj) when the channel radius i8]
scale numerical simulations of propagation in tapered chan-
nels. Conclusions are presented in Sec. VI.

ko(2)r3

rch(z): Zmy

Il. GENERAL FORMULATION 3

In this section, the basic equations describing the propa-
gation of a laser pulse in a tapered plasma channel are pre-
sented. The laser pulse, plasma channel, and the coordinatdnere P is the laser power, Pp(z)=2(m2c5/e2)
axes are illustrated schematically in Fig. 1. It is assumed thax[wo/wp(z)]2 is the critical power for nonlinear self-
the laser electric field is linearly polarized and can be writterfocusing in a plasm#36,37, Ky(2) = wp(2)/c=2m/\(2),
in terms of a slowly varying, dimensionless complex enve-and w,(z) = J4me?n(z)/m is the plasma frequency on axis.

lope, A(r,t), and a rapidly varying phasey(z,t) The equations governing the evolution of the laser enve-
= [tko(Z') dZ' — wqt, i.e., lope are then given bj8]
|
voy 4 &2 r? s 2iky2)] 14 i &)ﬁ+_ﬂko(z)(1+ i a)+ 1 1 &2+k2()
— —ki(z2) =+ 2iky(z — — | — i — -——|— z
LTz ez o) T ko(Dvg(2) 7] 9z az ko(@)vg(2) 3] "\ p2(2) c2|or? P
° v+ 2 arzn=0 @
—FFV.: —_— rz,7)=
moi(z) 4
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and tally from a longitudinal bunching of energy which gives rise
to a modulation of the laser envelope on the scale of the
d ) m ) ) plasma wavelength. In E¢4), the FR instability in the four-
— T O(r2) |[Ey=— - Qu(r.2)VIA]S, (5 wave resonant regime arises through the combined effects of
a7? 4e . ; A
the wakefield and mixed derivative terms. The self-

wherer = xZ+yZ is the radial coordinater, is the initial modulation instability also modulates the laser envelope at

. _ . the plasma frequency, however, this is accomplished through
= 2 ) ) . o
laser spot sizefdy(r,z)=y4me'N(r,z)/m, andE, is the transverse focusing provided by the radial variation of the

go dngfgﬁ;nsgx3lr)iljz(:t)i(g;?]dg\il\\l/zﬁebillecmC field which IorOducesplasma Wakefielcﬂ33]. The SM instability is retained.in Eq.
(4) through a combination of the density perturbation term

and the transverse Laplacian operator. The mixed derivative

(6) term can be neglected for SM, i.e., the paraxial approxima-
tion can be made. Additionally, the relativistic term can be
neglected for a fundamental description of SM, although as

The divergence operator is given WZVL+2[((9/0’)2) we will show, relativistic fOCUSing can enhance its grOWth.

—vgl(&/ar)]. The coordinate systemx(y,z,7) is associ-

ated with a reference frame moving at instantaneous velocity Ill. REDUCED EQUATIONS

v4(2); the independent variable denotes propagation dis-

tance andr=t— [3dz'/v,(z") measures time relative to the

arrival of the laser pulse at location The quantity|A| dinally varying densityN(z). can be derived from the gen
— . 1/2 H H ] -
= (e/mCwo)(2E- E)™*, where() denotes a time average, is eral propagation equations. We begin with E@s, (5), and

itLi:dn:ca)lgr:]nnétude of the electron oscillation momentum normal-(6), but neglect the plasma channel, group velocity disper-

In writing Egs. (4) and (5), it has been assumed that the sion, and the spot size correction terms. It is also assumed
L 2 . . that the longitudinal variation of the carrier wave number,
weakly relativistic limit, i.e.,|A|*<1, applies. Also, in de-

riving Eq. (4) a small term proportional t6°A/9z> has been Ko, and group velocityyy, can be neglected. These approxi-
) . X . . mations are valid when the pulse dimensions and channel
neglected. Neglecting this term is equivalent to neglectin

backscattered waves. Hence, the backward Raman inStabil?[rg?eigso?ri?isTaubCilri]ti:aasrg;rretrr]r?Sgi%/,Iaar)pjrc:ﬁ,af?znd t\t]viegrreogv th
is omitted. Otherwise, Eq4) is correct to ordefA|3. In 9 R R

deriving Eq.(5) the termc2V X V X E,,, which appears on éko(O)rﬁ/Z is the Rayl_eigh Iength._ With these approxima-
the left sidd 38,39, has been neglected. Neglecting this termtions: Eq.(4) can be written approximately as
is valid when 1K, <ro<r.

2

on e

2 melz)

Reduced equations that separately describe the FR and
SM instabilities for propagation in a plasma with a longitu-

The wave numbek, is given b ‘ﬁ‘_'_ _ | i) 2_ 2
0lsg y 7 " 2k kovg o7 (VI—kp®)A, 9
ko(2)=c N wi—4c?ri— w?(z), 7
o?) Vet 0~ b2 " where ®=6n/n—|A|?/4, and it has been assumed that
and the transformation velocity, has been set equal to the |0Al 97| <kqvg - _ N
linear group velocity of the laser, i.e., When the growth rates of the instabilities are much
smaller than the plasma frequency, the operdorwhen
vg(z)=C2ko(Z)/w0. (80 acting on fields, can be approximated by~V,

. . . —(Elvg)a/ar, which is equivalent to making the quasistatic
Equations(4) and (5) describe laser pulse propagation approximatior[45]. This allows Egs(5) and(6) to be com-

subject to the effects of group velocity dispersion, relativisticphined into a single scalar equation f@r given by
self-focusing, self-phase modulation, and optical guiding by
a preformed tapered plasma channel. Plasma group velocity
dispersion is included through the term in Eg) propor-
tional to 9°A/d7% [40,41]. Relativistic self-focusing42,43
and self-phase modulation are introduced though the term
proportional to]A|3. Optical guiding by the plasma channel where the term (1/4p¢/v—1)(#%|Al%/37%) has been ne-
is obtained by balancing the first three terms on the righglected from the right side under the assumption that
hand side of Eq(4). Additionally, the term proportional to ~c.
the mixed derivative??’A/ 979z can lead to the longitudinal To proceed with the analysis of Eq&) and (10), the
bunching of energy; neglecting this term is equivalent tofields are represented as
making the paraxial approximatidA0]. The radial variation

2

1
ﬁerﬁ(Z) O=2[c*V, —wy(2]|A% (10

of the channel density in Eq5) causes curvature of the A=ag+a,(z,7)e’+a_(z,re ", (11
plasma wave wave fronts and a damping of the wakefield in
the longitudinal directiorj44]. and
Equations(4) and (5) can describe both the FR and SM _
instabilities. The forward Raman instability arises fundamen- O =gy+[p(z,7)€+c.Cl, (12
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where o= —aj/4 andd(r, ,z,7) =k, - r, —wp(z)7is taken  Equation(18) is valid in the regimer>1/w,, z<L, and for
. ~ A _ 2 -1

to be a real function of, =xx+yy, z, andr. The complex VZ7<2Lypr/wp\vg, Where L=[(dwy/dz)/wp] s the

envelopesa. and ¢ contain the growth of the instabilities density gradient scale length.

and are assumed to vary slowly incompared withé. An equation describing the self-modulation instability in
Substituting Eqs(11) and (12) into Egs.(9) and(10) re-  an inhomogeneous plasma is obtained from Ef8), (14),
sults in and(15) by making the paraxial approximation, i.e., neglect-

ing the d/dr operator on the right side of Eq9). To

d i e fepT i a derive a single equation desEribing the SM instability, it
E(a+e P)= - 2kg 1= kovg or @p is_convenient to leta.(z,7)=a.(z,7)exp(*iAz), ¢(z,7)
= , Az) and define éi(z,r)=aIeXQIiw 27]
X[KCagh+kla, ], 13 _¢lznentd P
[ ‘faO(l) 18] (13 e_md b(z, T)_z d’e)ili[—ig)p(z)ﬂ- With the paraxial approxima-
i ia—iwpT . i P Sv(?ir:t,e%h?no(;srlggsAir;I—k;fko allows Egs.(13) and(14) to be
5(676 PT)= T Kovg 57 l@p ply
a K2ap—
x[K2agp+k2a* ], (14) dar _ . KpBo
P - 0z ! 2kq ¢, (19
d —ia
a—f=wo(02kf+wg)(a++a’i)- (15 d NE _ksao_
P E+2I a_—|2—k0 . (20)

In deriving Egs.(13) and (14), terms proportional to . ) ) i
boa. , which are small compared withha,, have been ne- Equations(19) and(20) can be combined with Eq15) into

glected on the right side. a single equation foa* given by
Settingk, =0, allows Eqgs(13), (14), and(15) to be com- )
bined into a single equation fap which describes Raman czi e_""PTi ol opr i+2iA 2 |l Zig2ar
forward scattering in an inhomogeneous plasma, i.e., 9z w,33 ar 9z - T9ran,
7 7 i &

0zt Vg

(9 e—lwp'r

Eln( ®p ) o7’ (18 \where g=agk, /4ky. Equation (21) describes the self-
modaulation instability in a plasma with a longitudinal density

where the right side contains only terms that are proportionavariation.

to the gradient of the plasma density. The quaniif(z) In the uniform plasma limit Eq(21) reduces to

=ayw5(2)/ 8wy is the standard expression for the local

peak temporal growth rate of FR in a rarefied plas2® 26|

in which the Stokes and anti-Stokes waves are driven reso-

nantly, i.e., four-wave growth. For cases wherg/ v, can-

not be neglected compared with unity, the anti-Stokes wavgyhere the term RAa* is assumed to be small in comparison

is driven nonresonantly and can be_neglected. In_ this IImItwith da*/dz and has been neglected. This assumption is

Egs.(14) and(15) can be combined into an equation fér . 2 1/4 : L

identical in form to Eq.(16), but with yer(z)=ao{[1 valid whenk, /k,<(agkq/k,)™". Equation(22), which is

D R 0 identical in form to Eq(52) of Ref.[33], has an asymptotic

+(wp/wo) [(wp/ wo)}?w,/4, which is the standard expres- :
sion for the peak temporal growth rate in the three—wavesomtlon of the form{31,33
V3 i

272

Pa

l *
———=ig’kda*, (22)
C 97922

1

1 (23

13
g%k3z%c q-) :

regime[26]. .
In the limit of a homogeneous plasma, i.eg,(z) =0, Eq. a*~ex;{3
(16) reduces to

2
92  Yer IV. HEURISTIC THEORY

Jzdt Vg

=0, 17

In this section, we present a heuristic analysis of paramet-
L o L ric instabilities in an inhomogeneous plasma similar to that
which is identical in form to the quasistatic I|m|t of EQLO) presented by McKinstrie and Bingham in REZ6]. This will
of Ref. [28]. Equation(17) has the asymptotic solutioh  hrove yseful for interpreting results from the full scale nu-
~exfd2yerVZT/vg]. S merical simulations presented in Sec. V.

For a weakly inhomogeneous plasma, the right side of Eq. |5 3 spatially uniform and underdense plasma, with the
(16) can be neglected leading to an approximate solutioyssymption thab,~c, the complex envelopes can be ex-
given by pressed as monochromatic perturbations of the form

, 12 ~exfi(k— dwlc)z—idwr], wheresk=k—k, , andk is taken
b(z, T)Nex%z(lj ng(Zr) dz’) } (18 1o be real anddw complex. In the lab framez(t), this is
Ug equivalent to writing, for example® = ¢y+{pexdikz
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—(wpt+dw)t]+c.c. In a uniform plasma, a resonant wave 25 P
number k=k,) will grow until pump depletion, electron 20 "
trapping, or other nonlinear mechanisms saturate the insta- E=173
bility. In an inhomogeneous plasma, the growth of certain o 15 M
spectral bands can be limited by detuning. For a plasma with F 10 7?=,‘1-41 N
kp(2), detuning is defined as the process by which a pertur- = i L
bation with wave numbek=Kk,(2,) is stabilized as the laser 5 -
pulse propagates a sufficient distance away fmgrto make 0 D
0 1 2 3 4

kp(2) change by an amount greater than the spectral width of .
the Raman line. Hence, unstable bandsk ispace translate o
into spatially localized regior_1_s of interac_tion where p"’?”‘cu' FIG. 2. Scaled local growth rate calculated from Eq(26) vs z
lar wave numbers are amplified. The width and location off 015 lon—01 andk=141 1.73. and 2

the interaction regions and the maximum amount of growth®' 20~ -2 @po/@o=5.L, an 4y 172, and .

expected for a given spectral band can be estimated from a _ _
calculation of the local growth rate, which will be a function ~AZ/2<Z—2,<<Az/2, the maximum number c foldings
of zandk. We consider the case where the scale length off @ given spectral component is approximately given by
inhomogeneity is much larger than the loegblding length . .

of the instability. Hence, at every locatian it is assumed F(oo,k)qur(prolc)kF’yS. (27)
that the local growth rate is approximately equal to the ho-

mogeneous plasma growth rate. The homogeneous plasmg writing Eq. (27), the assumptiomAz/L<k? has been
growth rates for FR and SM due to monochromatic perturmade, Equatiori27) is consistent with the result derived by

bations can be calculated from Eq$7) and (22). - Rosenbluti35] using a more rigorous WKB analysis.
For the following analysis, we consider a specific case EFor comparison with simulations it is useful to apply this
where the plasma density increases linearly wijthe., type of analysis to a situation in which a laser pulse propa-
wp(2)= wp0(1+z/L)1’2, (24) gates thrgugh a plasmg with a given density scale IAehgth
and a finite length.,. Figure 3 shows plots df (L,/L,K),
wherew,o andL are positive constants. i.e., the number of foldings atz=L,, for L,=3L and
several values of the pump amplituédg. The maximum
A. Forward Raman instability number ofe foldings is seen to increase withuntil k~2,

and then decrease sharply thereafter. The increa$e for
k<2 is due to thé® scaling mentioned previously. The cut-

off at k=2 is due to the finite plasma length, i.e., for these
Sw= l[c5k+i W]- (25) parametersl}>2 implieszo>L,. In practicg, the number of
2 e foldings may be less thali due to saturation. If we choose
) ) ] ) ) ] an arbitrary saturation level df=5, then we can draw the
Maximum exponential growth withfw=iyeg is obtained  fq|lowing conclusions from Fig. 3. First, for pulses with suf-
when 5k=0. Writing 6k(z) =k—k(2), the normalized lo-  ficiently smalla,, the forward Raman instability can be sup-
cal growth rate for the four-wave interaction is given by pressed by detuning, i.e., growth does not reach saturation
1 levels, as indicated by the,=0.08 curve in Fig. 3. Second,
y= 5{43,(2)(1+2)2_[(1+2) v2_jjaLe (26)  for sufficiently largea,, the wave number that reaches satu-
ration first should decrease ag increases. This can be seen
. - fap to _ by comparing theay=0.15 anday,=0.25 curves in Fig. 3.
for 4y5(1+2)">[(1+2)""~k]® and zero otherwise. The Note that for the curves labeleah=0.15 anday=0.25, a
normalized quantities arg=Im(dw)/wyo, k=Kc/wyg, Z
=z/L, and Szozaowpol\/ﬁwo, i.e., the four-wave Raman
growth rate az=0 normalized tow . 25
Figure 2 shows the dependence of the growth rate given 20
by Eq. (26) on z for several values ok. Because of the 5

spatial variation of the plasma density, each wave nurkber
. L . ) . 10
is unstable only in limited spatial region of width\z

~8Lk%y,. The peak growth rate, for wave numbkris
given by Ymax“wpokza’o, which occurs at locationz,
~L(k?-1). In general, the number af foldings experi-
enced by a given spectral Compon&nafter propagating a FIG. 3. Number ok foldings atz=L , vs scaled wave numbér

distancez is given by F(E,R)=(pro/c)fé&(i’,k) dz.  for a,=0.08, 0.15, and 0.25. Plasma parameters @g€0)/w,
Carrying out the integration over the unstable region=0.1, Lw,(0)/c=2x10° and scaled plasma length,/L=3.

Assuming ¢~ exfi(ok— dw/C)z—idwT], in Eq. (17) re-
sults in

30

[z = L, ]})
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20

— o
= W

w

107 Im(w fewyo)

0 0.5 1 1.5 2 2.5
Z/ZR

FIG. 5. Dependence of scaled channel radius and on-axis
plasma density ore. Plasma density is given bg(z)=n(0)(1
+2z/L) whereL=4Zg. Channel radius is given by E¢B).

FIG. 4. Scaled SM growth rate L for k=1.41, 1.73, and 2
obtained by solving Eq.(28) with ay,=0.5, k;c/wy,=0.2,
Lwpe/c=4X10%, andwq/wyo= 30.

givenI is associated with two different valuesiafBecause V. NUMERICAL SIMULATIONS
eachk is unstable in a distinct spatial region as shown in Fig. : . . . .
- i o This section presents numerical simulations of propaga-
2, the smallek should saturate the instability first. tion in tapered plasma channels. The simulations render the
laser pulse on a 3D Cartesiar,Y,7) grid and use Eq94)
B. Self-modulation instability and (5) to advance the laser pulse in The approximation

V~Vl—(2/vg)a/ar is made in order to facilitate the nu-
merical integration. This approximation requires that the
scale length of the longitudinal density variation is long com-
pared with thee folding length of any observed instability.
The seeding of the FR and SM instabilities as well as
their subsequent growth can be influenced by the initial
where sw= Swlw,, Sk= Skik, . pulse shape. In all of the simulations, the initial laser
Unstable wave numbers are those for which the discrimienvelope ¢=0), is taken to have the formA=agexp
nant of the cubic is positive. This condition can be written as(—rzlro) cos@rr ) for — 7 /2<7<7 /2 and zero otherwise.
The plasma channel is characterized by Egsand(3) with
1/3 the longitudinal variation of the on-axis density given by Eq.
) k (29 (24). The channel radius is chosen to vary this way so that, in
the absence of instability, the pulse and channel are matched.
When setting the channel radius, the poweappearing in
which shows that there is a broad range of unstable waveq. (3) is chosen to bd,/+2, whereP,, is the initial peak
numbers. The peak growth rate occurkatk,, laser pulse power. Figure 5 shows an example of the charac-
teristic variation ofn(z) andr.,(z) for the channels used in
1 3 the simulations. Propagation in tapered and untapered chan-
5w|5k_0:( 4 _)92/3wp (30) nels will be compared. The simulations are categorized ac-
2 cording to whether the FR or SM instability is the dominant
process.

Assumingg’i~ex;{i(8«—5w/c)z—i5wr], in Eq. (22) re-
sults in a dispersion relation which is cubic éw, i.e.,

Sw(dw— 8K)2=g?, (28

k_kp<(zgz pr

We consider a linearly varying density as given by Ezf))
and solve Eq(28) numerically, Iettlngk —>kp(z) to obtain A. Forward Raman instability

the local growth rate as a function pfandk. Figure 4 plots According to the heuristic analysis, there are parameter
the scaled growth rate versador several values of scaled o imes of the forward Raman instability where certain spec-
wave numbe|k kc/wpo. The parameters used for the plot, tral components can grow to saturation, and regimes where
ie, @p=05, Kk Clop=0.2, Lwy/c=4x10°, and the growth of all spectral components of a given laser pulse
wo/wpo:30 correspond closely with parameters used incan be suppressed by the longitudinal density gradient of a
full-scale simulations presented in the following section. Astapered channelsee Fig. 3 The simulations will address
seen from Fig. 4, the peak growth rate for a gikeoccurs  these two regimes.

whenk=k, or equivalently, atzo=L[(kc/wyo)*~1]. The The first set of simulations are in the parameter regime
region of instability, however, is not highly localized about where the instability is expected to grow to saturation. As a
Zy. Hence, for propagation into an increasing plasma densityfirst case, we consider a laser pulse wig=0.15, \
wave numbers that initially satisfy the resonance condition=1 ym, r,=12.6um, andr_=0.48 ps propagating through
k=k, at somez,, will remain unstable foz>z,, unlike the g tapered channel witm(0)=1.24x10%cm 3 and L
case for the FR instability in which an unstable wave number=6.77,. For these parameteiy/P,(0)=0.05. The pa-

becomes stable after propagating a distance 8f.k3y,. rameters are chosen to correspond to the curve lalsjed
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=0.15 in Fig. 3. Hence, the analysis of Sec. IV predicts that 0

the k~1.8w,(0)/c mode will e fold ~7 times within a re- 2 @
gion of width Az=1.7Zg in the neighborhood ofz

=15Z;. 4

Figure 8a) shows the resulting on-axis Fourier transform untapeted

of the laser pulse at ZB; in an untapered channel with
on-axis densityn(0)=1.24x10cm 3. Multiple Stokes
and anti-Stokes lines are observed with a dominant Stokes
signal ato— wo=w,. Figure Gb) shows the on-axis spec- -105— 3 0 B 30
trum atz=17Zy after propagating through a tapered chan-
nel. The peak of the dominant Stokes sideband has grown
~10 e foldings from its initial amplitude and is shifted from
the pump byw~ —1.7w0,(0). At z=17Zg there is no appre-
ciable signal atv~ w,(0) due to the detuning of these spec-
tral components by the spatial variation of the plasma den-
sity. For both the tapered and untapered cases, the Stokes
sideband is approximately three times larger in amplitude
than the anti-Stokes sideband indicating that the simulations
are marginally in the four-wave Raman regime.

The evolution of the Stokes sideband for the simulation of 0 25 5 75 10 125 15 175
Fig. 6 is illustrated in Fig. 7. Figure (@ compares the z/Zg
growth of the dominant Stokes line for a tapered and unta- ] )
pered channel. In the untapered channel, the Stokes line F!G: 7 (@ Amplitude of the Stokes sidebands zsor the ta-
grows immediately after the start of the simulation. Thepered and untapered plasma channels from the simulations of Fig.

Stokes wave grows exponentially for 7 Zg, with a growth 6. (b) Normalized frequency shift of the Stokes sidebahe, vsz
for the tapered channel simulation of Fighg The solid curve in

panel(b) denotes the normalized plasma frequency.

-6

Iufe_ (arb. units)]

100

— 10 rate that is roughly 3.5 times smaller than the standard four-
é . wave Raman growth rate. In the tapered channel, the growth
= of the Stokes wave is delayed. No discernable Stokes line is
8 01 observed untiz>10Zg. The suppression of the Stokes line
001 for z<10Zg is consistent with the detuning process dis-
— 0.001 (\ cussed in Sec. IV. Figure(d) shows the evolution of the
) \ normalized frequency shift of the Stokes line for the tapered
- channel. The Stokes frequency shift increases with the local
(w— wO)/wp plasma frequency but is smaller than the plasma frequency
by a constant amount0.2w,(0). The Stokes shift at a
100 givenzis equal to the plasma frequency at approximately
% 10 —-3Zg.
E 1 Figure 8 shows the laser power and on-axis intensity pro-
<= files associated with the spectra shown in Fig. 6. The fact
= ol a that the power and intensity profiles exhibit a similar degree
= 001 - of modulation indicates that the modulations arise mainly
o 0.001 from a longitudinal bunching of energy within the laser
pulse, which is characteristic of the FR instability. The
4 modulations are also seen to damp faster towards the back of
(w—wp /wp(o) the pulse for the tapered channel case.

Assuming that the FR instability is saturated, i.e., reaches

FIG. 6. On-axis frequency spectrum of a laser pulséaaz  a highly nonlinear state, after a given numberedbldings,
=25Z in an untapered channel and (@ z=17Zx in a tapered  the |ocal analysis yields a prediction for the propagation dis-
channel. Propagation distances are chosen such that Stokes linggce ,zr, at which saturation occurs. As stated in Sec 1,
undergo a similar number @foldings between the two cases. The the maximum number ok foldings for a givenk is
quantity Aw in panel(b) denotes the frequency separation between
the pump and the Stokes sideband normalized J0). Thequan-
tity a_ denotes the amplitude of the first Stokes sideband. Thé™ L(k?~1). Solving fork in the expression foz; and sub-
initial laser pulse hasi,=0.15, A\=1 um, ro=12.6xm, and 7, stituting into the expression de results in a relationship
=0.48ps. The on-axis plasma density z2£0 is n(0)=1.24 betweenz; anday, |-e-,Zo°<ao , Which can be compared
X 10cm 3. At z=0, Py/P,(0)=0.05. For the tapered channel, with the simulations. As a criterion for saturation in the
L=6.7Zy. simulations, we assume that saturation occurs when the

~8(pr0/c)k 'yo, which occurs in the neighborhood D[f
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0.05 15
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FIG. 9. Dependence of the scaled intensity doubling lerzgth
on ay. Points represent simulations with parametersl um, r
=12.6um, n(0)=1.24x10*°cm 3, 7,=0.48ps, and.=20Z%.
The solid curve shows a best fit using thleocag“’s dependence
predicted by local analysis.

04

03

are seen to convect backward in the pulse frame, the convec-
tion velocity is slow enough that the modulations can grow
to a large amplitude before reaching the back of the pulse.
03 02 01 0 01 02 03 For the tapered channel, since no frequency sidebands grow
7 (ps) to a significant amplitude over the propagation length of the
simulation, large amplitude modulations of the laser enve-
lope at the plasma frequency are not observed. A careful
examination of the laser envelope shows that as each Stokes
peak appears in the spectrum of Fig. 10, small amplitude
modulations grow sufficiently large as to double the lasemmodulations form near the leading edge of the laser enve-
intensity from its initial peak value. Figure 9 shows the de-lope. The modulations then rapidly convect out the back of
pendence ofz on a, obtained from the simulations. The the laser pulse before they can grow to large amplitudes,
simulations show good agreement with t#g*® scaling pre-  1€aving the laser envelope relatively undistorted. The inten-
dicted by the local analysis over a range in whighandz sity gain observed in Fig. _m) is due to both a longitudinal
vary by more than a factor of 3. Because of the rapid inten@nd transverse compression of the laser pulse.
sity gain near the saturation regiom, does not depend

FIG. 8. Longitudinal profiles of scaled power apal|? at (a) z
=257y in an untapered channel and (@ z=17Zy in a tapered
channel corresponding to the spectra displayed in Fig. 6.

strongly on the arbitrary choice of saturation level, i.e., the 100
plot in Fig. 9 would not change significantly if we had as- 10 @
sumed a factor of 3 or 4 intensity gain for the saturation é 1
criterion instead of 2. =
The next simulation illustrates an interesting case for E 0.1
which no Stokes lines of the laser grow to saturation. The 2 001
initial laser pulse hasy,=0.04, A\=1um, 7, =1ps, and ~ 0.001
ro=150um. Figure 10a) shows the spectrum of this pulse /\ .
after propagating 2.Bg in an untapered channel with an 302 - 0 1 2 3
on-axis density ofn(0)=7x10"¥cm 3. The Stokes side- (w — wo)/wy(0)
band is 100 times larger than the anti-Stokes sideband indi- 100
cating that the Raman instability occurs in the three-wave (b)
regime. Figure 1) shows the spectrum of the same initial & 10
laser pulse after propagating Zf in a tapered channel with g 1
L=7.4Zy. The initial on-axis density of the tapered channel g 0.1 3
is the same as that of the untapered channel. Note the ap- g 5
pearance of a Stokes structure with three closely spaced = om
peaks. If the evolution of the spectrumins examined, the 0.001 1
peaks would appear sequentially in the order indicated on the "

plot with the lowest amplitude peak appearing first. Each 32 -(1w—w0)/w (01) 2 3
peak is seen to grow to a maximum amplitude and decay e

slightly as the next peak appears. FIG. 10. Frequency spectrum at 2.5Z after propagation in

Figure 11 shows the on-axis laser envelope profile at (a) an untapered antb) tapered channel for parameterg=0.04,
=0 and z=2.5Zy for propagation in an untapered and ax=1 um, r,=150um, n(0)=7x10%¥cm 3, and 7, =1 ps. For
tapered channel. The untapered case shows the appearancehebe parameter®,/P,(0)=0.25. For the tapered channél,
modulations in the laser envelope. Although the modulations=7.4Zx.
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0.0025

---------- z=0 )
0.002 2 =252,

ap 00015

0.001

0.0005

04 02 0 0.2 04

(b)

04 02 0 02 04
7 (ps)
FIG. 11. Scaled amplitudd#\|? at z=0 (dashed curvésandz

=2.5ZR (solid curves for propagation in(@ an untapered anb)
tapered channel for the same simulations as in Fig. 10.

B. Self-modulation instability

The SM instability can occur for a matched, channel-
guided pulse even when the laser poviek P, since the
channel effectively eliminates diffraction. As the plasma den-
sity increases with propagation distance, the critical power
for nonlinear self-focusing decreases leading to an increased
focusing of the laser pulse. The increased focusing can en-
hance the SM instability. This is illustrated in the following
simulations in which a laser pulse is propagated through a
tapered channel in which the on-axis density and channel
radius vary as shown in Fig. 5. The initial laser pulse had’
a9p=0.5A=1um, 7, =2.4ps, and ;=40 um. The on-axis
plasma density at=0 isn(0)=1.24x 10*¥cm 3. The peak

PHYSICAL REVIEW E 66, 036402 (2002

(b)

FIG. 13. Surface plots dfA|? in thex-7 plane aiz= 2.5 Z, after
ropagation througha) an untapered channel ar{t) a tapered
channel in which the radius and density vary as shown in Fig. 5.
The initial laser pulse used for both panels is characterizedyby
=05 x=1um, 7. =2.4ps, and ,=40um. The on-axis plasma

laser powerP is such thatP=P,(0)/2. density atz=0 is n(0)=1.24x 10 cm 3.

Figure 12 shows a plot dfA|? on-axis and scaled laser

power versusr after propagating a distance of Zk. The

0.8

0.6

04

0.2

FIG. 12. On-axis profile ofA|? (solid curvé and normalized
laser power(dashed curvevs 7 at z=2.5Zy for an initial laser
pulse withag=0.5, A\=1um, 7, =2.4 ps, andr,=40um. The
on-axis plasma density at=0 is n(0)=1.24x10'¥cm

-1 -0.5 0 0.5 1
7 (ps)

laser power is normalized to the nonlinear focusing power at
z=2.5Zg. Although the laser envelope is strongly modu-
lated, no modulations are evident in the power profile. This
indicates that the modulations in the laser intensity were
caused by a flow of energy transverse to the laser axis, which
is characteristic of the SM instability. The ratio BfP,(2)

has increased from its initial value &=0.5P,(0) due to

the smaller value oP, atz=2.57g.

The fact that the modulations are enhanced by relativistic
focusing was verified by comparing the simulation of Fig. 12
with two cases in which the nonlinear self-focusing power
did not decrease with propagation distance. In the first com-
parison, the initial conditions were identical except that the
channel was not tapered. For this case, self-modulation was
observed but with the modulations growing more slowly

these parameter®,/P,(0)=0.5. The density and channel radius than when the channel was tapered. Figure 13 shows that, at
vary as in Fig. 5.

the same propagation distance, the degree of envelope modu-
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100 0
(a) (a)
10 5
= 1 g 4
£ 01 £
;E 0.01 g 6 untapered
= s
— 0.001 =
-10
i | A
4 2 0 2 4 05 1 15 2 25 3 35
(w — wo) /wy(0) 2/Zg

100

” ®) 1.3 :
- AB 1.25
E 1 1.2
é 0.1 a_ 1.15
<
«_ 0.01 L1
= 1.05

0.001 :

A A 005 1 15 2 25 3
2 0 2 4

-4 ,
(@ — o) /wp(0) A
] FIG. 15. (a) Amplitude of the Stokes sidebands gsfor the
~ FIG. 14. On-axis frequency spectrumzt 2.5Zg for propaga-  tapered and untapered plasma channels from the simulation of Fig.
:Ik?:;?m(ﬁ)aggnupljtﬁgesrﬁgwinicr? )Ftizpelrsed channel corresponding to 14. (b) Normalized frequency shift of the Stokes sideba@d_g, 'S
B z for the tapered channel simulation of Fig.(t4 The solid curve
in panel(b) represents the normalized plasma frequency.

lation is much less for propagation in the untapered channel.

The second comparison utilized the same initial laser
pulse and tapered channel as the run shown in Figp) 1But The electron dephasing length is usually defined as the
artificially held constant the plasma density in fla¢®> term  propagation distance required for an electron moving at the
of Eq. (4). As a result, the relativistic focusing effect was not speed of light to slip a distance af,/4 relative to the wake-
enhanced as the pulse propagated. For this case, the growftld. The standard expression for the dephasing length
of the modulations also progressed more slowly than for th&8,10], Lp=yi\p=\3/2\? is derived under the assumption
tapered case. Hence, it is reasonable to conclude that whitbat the phase velocity of the wake, , is equal to the group
relativistic self-focusing is not a necessary condition for thevelocity of the laser pulse, . While this assumption is valid
SM instability, it was the mechanism responsible for enhancin the short pulseqr <\,) regime it may not be accurate in
ing its growth. the long pulse regime when the wake is generated primarily

Figure 14 shows the on-axis frequency spectrunz at by en\(e_lope modulations that result from instabilities. In t_his
=2.57,, after propagation in an untapered channel and £2S€ it is more accurate to assume that the phase velocity of

tapered channel. Unlike the simulations done in the Ramawed\"’l""k.e will bﬁ. nr:aarly gqual tt()) the pr;ase \r/]elolcity of ﬂ?e
regime, the Stokes and anti-Stokes sidebands are of equ%‘l0 ulations, which need not be equal to the laser pulse

. o . group velocity.

amphtude gnd the spectrum Is highly symmetric. At any For an untapered channel, the approximate phase velocity
given locationz the sidebands for the tapered channel Case: i modulations can be calculated from the disper-
arr]e Iargler in amplitude and are broader than for the untapereélfon relation. For eigr'nple the fastest growing mode for the
channel. ) - . '

The evolution of the Stokes sideband of Fig. 14 is plottedi'\g 'gsr:g[g“t%sv;'gt;r?gg fl; g‘; IEe((a?j)O/)kEr’hewgfazleeéo %g’é’u
in Fig. 15. Figure 16a) compares the growth of the Stokes _ - @ H @ et =y fo i d . I < th
amplitude for a tapered and untapered channel. Unlike th@ lon phase velocl YWm=vm/C, In auniform plasmais then
case of the FR instability, the tapered channel does not sigg'ven approximately by
nificantly delay the onset of the instability relative to the 1
untapered channel. This is consistent with the analytical re- Bm~1— >
sult that detuning is not effective for the SM instability at
these parametersee Fig. 4. Figure 18b), illustrates the | hare we have chosen, =2/k, =4r,. Equation(31) in-
evolution of the Stokes line frequency shift for the tapereddicates thaig,, < B, when
channel. Similar to the FR case of Fig. 7, the Stokes fre- m e

C. Wake fields in tapered channels

2/3

agh , 31)

16r,

guency shift increases with the local plasma frequency but is an |28 @2 2¢2
smaller than the local plasma frequency at any gizéry a el —2+ — (32
constant amourt=0.08w,(0). 1610 wg Tp
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FIG. 16. Level plots of the on-axis longitudinal component of N 15
the electric field ve and 7 for propagation in an untapered plasma RS |
channel for the same simulation as in Fig(&3Electric field is 05
normalized toE,,,=Mcwyg/e. 8

0 025 05 075 1 125 15
Hence, a more accurate estimate of the dephasing length 7 (ps)
for pulses undergoing self-modulation lig, = ym)\ where
Ym=(1—Bm) Y2 As an example, consider a self-modulated
laser pulse withA=1um, a;=0.5, and spot sizerg

FIG. 17. (a) Normalized on-axis longitudinal component of the
electric field atz=2.5Zy associated with the laser pulse of Fig.
13(b). Electric field is normalized t&E,,,=mcwyo/e. Panel(b)

8y 3
=40um in a plasma with densityr,=1.24x 10t cm- shows a level plot of the on-axis longitudinal electric fieldzend
_()‘p_: 30um). For this exampleyy,=13 andy,=29, which  ; tor propagation in a tapered channel for the same simulation as in
indicates that.,~L /5. Fig. 13b).

Figure 16 shows a level plot of on-axts /E,,, as a func-
tion of 7 and z resulting from the full-scale simulation. In  where a prime denotes a derivativeznFor the parameters
this type of plot, objects traveling slowéfaste) than the  considered here, terms proportional ¢, and v, do not
laser pulse will trace out a trajectory with a positireega-  contribute significantly to the phase velocity. In the absence
tive) Slope. For reference, the thin white curves denote Obof a density gradient we recovef,=uv,,. Also, in the short-
jects traveling at velocitieg and Um» i.e., the theoretical pu|3e reg|me we can sef,= Vg and recover, essen“a”y, Eq.
phase velocity of Eq(31). For this example it is observed (30) of Ref.[8], which gives the wakefield phase velocity for
that the phase velocity of the modulations is equal to they tapered channel in the short-pulse limit.
phase velocity of the wakefield. The theoretical value of the Figure 17a) shows the profile of the longitudinal electric
modulation phase velocity is slightly smaller than the wakefield associated with the laser pulse shown in Fighl3The
phase velocity resulting from the simulation, with a relative\yakefield amplitude increases into a peak amplitude of
error in the relativistic factory of ~10%. The curve denot- g, =0.27,,,, whereE,,,= mcw p0/€~110 GV/m, and then
ing v=c in Fig. 16 indicates that the dephasing distance fors|ow|y damps forr>0.5 ps. The damping is an effect asso-
a particle traveling near the speed of lighti9.5Z¢. These  cjated with the radial variation of the plasma density and has
results are consistent with simulations reported in R23].  peen observed in earlier workd4]. In the tapered channel,

The phase velocity of the wakefield in a longitudinally the wakefield in the neighborhood 6f=0.7 ps has a phase
varying plasma can be expressed in terms of the velocity ofelocity close toc as shown in Fig. 1(b). It has been shown
modulations,vy,, in a straightforward manner. The wave previously that particles injected into this luminal region of
number of the plasma wave is given b¥,(z) the wake can be accelerated to energies beyond the dephas-
= wp(2)/vn(2), where the modulation velocity is also taken ing limit [8]. This appears to be a way to mitigate the phase
to vary spatially. Behind the laser pulse, the phase of thglippage problem seen in other simulations of the channel-
plasma wave |n the group velocity frame is given by guided self-modulated LWFR23].
Wz, 1) = (v )Z (7—70)], wherer, is an arbi- The fractional energy spread acquired by a distribution of
trary constant WhICh “fixes the phase. In the laboratory frameglectrons injected in the vicinity of the luminous point of the
the frequency and wave number associated with the plasmaake is given by
wave areQ = —dyldr andK=[(d/dz) —vg *(ala7) ]y, re-

spectively. Hence, the phase velocity of the plasma wave is W(0,z) —W(67,2) wsoérz 1 a4
Q o, 1 1
vw(Z,7)= - =vm(2)] 1~ w_pvm Ll vg z where §7=7— 1., 7. denotes the axial coordinate of the

luminous point,W(0,z) denotes the energy gained by an
( / / ) ] -1 electron injected at the luminous poiiti( 57,z) denotes the

UmU v
T 8__1m (33 energy gained after a distanzéy an electron initially dis-

2 . . K .
vg  Um placed byér from the luminous pointw,, is the on-axis

036402-11



PENANO, HAFIZI, SPRANGLE, HUBBARD, AND TING PHYSICAL REVIEW E66, 036402 (2002

plasma density az=0, andLo=w,/wy|,-¢ is the density that laser pulses undergoing a self-modulation instability in a
scale length az=0. In deriving Eq.(34) it has been as- plasma channel are characterized by modulations arising
sumed thaz<L,, wpod7<1, the wake field amplitude is from the transverse flow of energy. As seen in Fig. 14, these
constant, and that the electrons are injected with an initiaelf-modulated pulses exhibit highly symmetric spectra. For
energyW(587,0)<W(47,2). Itis also assumed that the lumi- a tapered channel in which the plasma density increases in
nous point occurs where the accelerating field is maximunihe direction of propagation, it was shown that the growth
and that its phase is constasee Fig. 17. Using Eq.(34),  of the SM instability is enhanced by relativistic focusing.
we find that for the parameters of Fig. 17, i.Bpo=30um It is also evident from Fig. 15 that, unlike the FR instability,

andLo~2 cm, an electron bunch of duration5 fsec will ~ the tapered channel did not delay the growth of the SM
acquire a fractional energy spread-e¥ % after propagating instability.
a distance of~1 cm. The phase velocity of the wake field generated by the SM
instability was analyzed. For propagation in a uniform
VI. CONCLUSIONS plasma, the phase velocity of the wake is smaller than the

group velocity of the laser pulse when the condition given by

We have investigated the propagation of intense laseEq. (32) is satisfied. Equatiorg31), which gives the phase
pulses with pulse durations greater than the plasma period welocity of the wake, was found to be in good agreement
tapered plasma channels. Reduced partial differential equavith the simulation presented in Sec. V. Results indicate that
tions that separately describe the FR and SM instabilities in éhe slower phase velocity of the wake should be taken into
longitudinally varying plasma were derived and a heuristicaccount for an accurate calculation of the dephasing length.
analysis of the detuning of these instabilities was presented. Simulations show that in a tapered channel, the wake field
An illustrative case of a linearly increasing plasma densityphase velocity can be equal ¢cat some location behind the
was considered to identify the relevant scalings that charagulse. The wake field amplitude, however, initially increases
terize the detuning process. The analysis shows that the F&hd then decreases towards the back of the pulse. For the
instability can be easily detuned since a given wave numbegxample shown in Fig. 17, the phase velocity of the wake
is unstable only within a limited spatial regigeee Fig. 2  becomes equal toin the region where the wakefield ampli-
For the SM instability, the detuning process is not as effectude is maximum. The larger wake field amplitude occurring
tive since the unstable region is much broader in extee¢  within the luminal part of the wake provides the ideal con-
Fig. 4). dition for accelerating high-energy electrons. An optical in-

Full-scale numerical simulations of propagation in taperedection scheme capable of producing shertféec) electron
plasma channels were preformed and parameters that favdsunches, such as the colliding pulse injedi46], may be
ably excite either the FR or SM instability were found. The necessary to limit the energy spread of the accelerated par-
forward Raman simulations exhibited modulations of the laicles. These results suggest that a self-modulated LWFA uti-
ser intensity caused by the longitudinal bunching of energyizing a tapered channel may be a viable near-term experi-
(see Fig. 8 Detuning of the FR instability in a tapered chan- ment.
nel was observed. For example, Fig. 7 shows that the growth
of the Stokes line is delayed in a tapered channel relative to ACKNOWLEDGMENTS
an untapered channel and that the frequency of the Stokes
line varies with propagation distance. Simulations showed This work was supported by the DOE and ONR.
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